skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raghwani, Jayna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Metagenomics is a powerful tool for characterising viruses, with broad applications across diverse disciplines, from understanding the ecology and evolutionary history of viruses to identifying causative agents of emerging outbreaks with unknown aetiology. Additionally, metagenomic data contains valuable information about the amount of virus present within samples. However, we have yet to leverage metagenomics to assess viral load, which is a key epidemiological parameter. To effectively use sequencing outputs to inform transmission, we need to understand the relationship between read depth and viral load across a diverse set of viruses. Here, using target enrichment sequencing, we investigated the detection and recovery of virus genomes by spiking known concentrations of DNA and RNA viruses into wild rodent faecal samples. In total, 15 experimental replicates were sequenced with target enrichment sequencing and compared to shotgun sequencing of the same background samples. Target enriched sequencing recovered all spike-in viruses at every concentration (102, 103, and 105± 1 log genome copies) and showed a log-linear relationship between spike-in concentration and mean read depth. Background viruses (includingKobuvirusandCardiovirus) were recovered consistently across all biological and technical replicates, but genome coverage was variable between virus genera and likely reflected the composition of target enrichment probe panel. Overall, our study highlights the strengths and weaknesses of using commercially available panels to quantify and characterise wildlife viromes, and underscores the importance of probe panel design for accurately interpreting coverage and read depth. To advance the use of metagenomics for understanding virus transmission, further research will be needed to elucidate how sequencing strategy (e.g. library depth, pooling), virome composition, and probe design influence viral read counts and genome coverage. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  2. Free, publicly-accessible full text available January 1, 2026